3.6 Secondary Key Retricval - A13
v v i

=1
o ‘
em——— ‘Bucket
Figure B T T b; = :
7 1100110 b; © 1544542 P
Example of g ' ‘
extendable 182962 il
hashing. | w2t | s
‘Bucket address table 0892941 P4
@
\ 7 Bucket
8 11001100 b 1 1saesaz o
8|7 mooti01 Cby T toms2 P
i 1 080204l Ps
Bucket address table
b;
1329632)
1458576 Ps
(i)
Bucket
i e
7 1100110 b;
Bucket address table
L
; 1329632 . - |0 P2
1458576 Ps
(ii) .
]

3.6

- Secondary Key Retrieval

In the previous sections we have considered the retrieval and update of data based
on the primary key. In the following sections we consider file organizations that
facilitate secondary key retrieval. Secondary key refrieval is characterized by the
multiplicity of records satisfying a given key value. As such, there is no longer a

114 €hapter 3 File Organization

one-to-one correspondence between key values and records. File organizations for
secondary key retrieval are used in conjunction with methods for primary key re-
trieval.

" Query and Update Types

Queries are in general formulated to retrieve records based on one or multiple key
values. In the latter case, the retricval expression contains key values punctuated with
Boolean operators.

Query Types:
1. Find all employees working in the computer science department.

2. Find all employees working in the computer science department who are
analysts.

3. Find all students who are taking the files and database course. but not the
artificial intelligence course.

Update types:
1. Add records in proper sequence.
2. Delete records satisfying some condition.
3. Modify attribute values of records, satisfying some condition.

The above queries and upuates can be simply but inefficiently handled by scan-
ning every record in the file. A number of file organizations permit faster and more
efficient retrieval. The choice between them, just as in the case of primary key re-
trieval, is solely dependent on the application. Faster access to the records is pro-
vided by the use of indexes and/or the linking together in lists or some other suitable
structure of logically related records. It is usual to relate records based on <attribute,
value> pairs.

The secondary key structures support access to all records that satisfy some
<auribute, value> pair. Logically, as shown in Figure 3.19a, the secondary key
access file is made up of a set of records containing (attribute, value, record_list).
Here record_list is a list of records that contain the <attribute, value> pair. For
example, in the following secondary key access file entry, the records Rj, . . .,
R;;, contain the value v;; for the attribute A;:

{<A;, vi> Ry, . . ., Ry}

The Ry, ’s are used to represent the associated records and may be either the primary
key values, some unique system assigned identifiers, or unique physical addresses.

In general, the record_list (R;;,, . . . , R;;,) may be maintained as a number of
separate stored lists, for instance, hy;, such that we have

<Ais Vijs By, by> Py, - L., Pij"ij)

where n;; is the number of records with value v;; for the attribute A; (i.e., n; is the
number of records in the record_list Ry. . . . , R;,) and Py, is the pointer to
the kth stored list, for all k = 1.. . . , h;. The average length of each stored list
is nU/h‘J ' ’

Physically, as shown in Figure 3.19b, the names of the attributes may be sepa-
rated from the values and record_list and kept in a directory. Each entry in the

3.6 Secondary Key Retrieval 115

L

Figure 3.19 Structure of the directory and index.

INDEX for A;

Attribute Value Record_list
Al Vi Rl) Rg, [
A] Vi2 Rz, Rs, -

INDEX for A,
A; va1 Ry, Rs, . o

A, V22 Rs, Res -

(a) Logical structure

DIRECTORY INDEX for A
Pointer Attribute Number of Pointers to
Attribute to Index Value Records Lists Stored- List
Ay E— Vi ny _hn Pn, . -Pn,,“
A, e Viz n;; hy; Py o Py
Vi Ny hlj P'jl A Plj"lj

INDEX FOR A,
Le—.

(b) Physical structure

directory is associated with a given attribute and points to a structure containing the
set of associated (value, record_list) pairs. For the moment, we can think of the
structure containing the (value, record_list) pairs as a sequential file, referring to it
as the value-access file or as the attribute index. There are two common methods of
organizing the value-access file: the inverted index method and the multilist. We
discuss these organizations in the following sections.

3.6.1 Inverted Index Files

4‘\
The inverted index file (or simply the inverted file) contains the list of all records
satisfying the particular <attribute, value> pair in the index, wherein h;; (the number '
of separate stored lists) is equal to n;; (the number of records with the given attribute
value) and each Py points fo a list of records of length one (P, is in effect R;;, a
pointer to the record instead of to & record list). In other words, a pointer for every
record with the given value v;; for the attribute A, is kept in the index This pointer

118 Chapter 3 File Organization

——
Figure 3.20 A simple implementation of an inverted index.

DIRECTORY INDEX for A, Sequential
(attribute file
value)
A - vV —

Az Viz
. . Vi3 1
. . ‘

A simple implementation of an inverted list to maintain the record_list for each
value for a given attribute as a sequential file is shown in Figure 3.20. The index
contains a <value, pointer> pair, where the pointer points to the starting position of
the associated record_list in the sequential file.

3.6.2 Mulilist Files

In a multilist file there 15 only one stored list for every <attribute, value> pair.
Therefore, the index of a multilist file contains only the single address P; for the
<attribute, value> pair <A, vij>; hj = 1. There is only one stored list of length n;;.
The records in the stored list are linked together in the form of a list, Thus, the
record list of 8 multilist file is implemented as a list of records. One exists for every
<attribute, value> pair (as the name suggests), yith each stored record containing a
pointer indicating the succeeding member of every list to which it belongs. A pointes
to the first member of every list is maintained in the index. The length of each list
can also be maintained in the index (this is illustrated in Figure 3.22a).

Figure 3.21 gives, in pseudo-Pascal, the definition of a record, all of whose
attributes participate in multilists. The pointer field associated with each attribute can

L]
Figure 3.21 Pseudo-Pascal definition of a stored record in a multilist file.

attribute_rec_type_i = record
value : attribute_type._i;
next : pointer {pointer to next record}
end;

stored_record = record
attribute_1 : attribute_rec_type_1;

attribute_j : array[1..m) of attribute_rec_type_i;

attribute_n : attribute_rec_type_n;
end;

3.6 Secondary Key Retrievai 119

Figure 3.22 Multilist file.

INDEX for Interior_Color

INDEX for Engine_Size «—

#g

(a)

Pointers from Index for
Interior Colors Exterior Colors Engine Size
brown cream gray black maroon metallic gray 4 568 12

!

store the pointer to the next record with the same value. If an attribute has multiple
values (e.g., the same model car in the automobile dealership example comes in
many interior and exterior colors and engine sizes), the attribute may be stored as an
array of size m, as indicated for the attribute_j in Figure 3.21.

A simple method of creating multilist files is to insert new records at the front
of the list. Searching for a specific record with a given value for an attribute requires

(b)

122 Chapter 3 File Organization

and discover that we already retrieved the record for Audi4000. We do not
retrieve that record and find from the entry for Audi4000 that the sexyrecord
in the list for Interior_Color = gray is Audi5000. Before actually retrieving
this record we consult the DONTAG list again and discover that the re-
cord for AudiS000 has been processed and the next record in the list tor tnte-
rior.Color = gray is Malibu. However, since there is an entry for Malibu
in the DONTAG list, it was already retrieved. From this entry for Malibu
in the DONTAG list we find the next record in the list for Interior_Color
= gray to be Pontiac6000. There being no entry foi Pontiac6000 in the
DONTAG list, we retrieve and process it. Since there are no more records
in the list for Interior_Color = gray, we have accessed all records. In this
way we ensure that each record satisfying more than one term in the disjunct
will be retrieved only once. W

Maintenance of Multilist Files

The deletion of records entails the removal of the record from the various lists. In
some implementations of the multilist where the record is not physically removed but
only flagged to indicate its deletion, no change is involved. While the record is still
physically part of the lists, it is not so logically. If a record is both deleted and
physically removed, all the lists of which the record forms a part have to be altered
as well. In any case, the length of each of the lists in which the record was involved
is decremented.

A record must first be located before a change can be made to its data values.
If the value to be changed belongs to a secondary key field, we would have to alter
the relevant list. This entails that the list be traversed with the old value, the record
removed from the list, the value changed, and the record added to the list for the
new value. If Jata values in a number of fields are changed, this may require the
traversal and update of many lists. The process is simpler if records are double-
chained with pointers to both successor and predecessor records.

The performance of a multilist file is satisfactory when the individual lists are
short. Regarding conjunctive queries, if the length of the lists are included in the
index, the shortest list is used for record retrieval. However, the number of records
actually satisfying all terms of the query may be a very small fraction of those re-
trieved. The use of the DONTAG list avoids reaccessing the same records in the case
of disjunctive queries. When the lists become lengthy, it is desirable to break each
list up into a number of sublists as in the case of the cellular lists discussed in the
next section.

)

3.6.3 Cellular Lists

Lists in a multilist file can become lengthy. The fact that the stored records may"
be distributed among many physical (disk) storage units, or within the same storage
unit in some manageable cluster of cylinders (the cluster may be a single cylinder),
or some other manageable storage area, could be used to advantage by partitioning

3.6 Secondary Key Retrieval 123

Figure 3.23

Cellular list.

3.6.4

View of cell

Cylinder (cell) (all pointers are local to cell i)

logical list {cl1,cl2,...
c21,..., c2n,...}

the lists along these boundaries (or cells). Thus, in a cellular list organization the
lists are limited to be within a physical area of storage, referred to as a cell. Figure
3.23 is an example of a cellular list. The lists are limited to a single cylinder of a
movable-head-disk-type storage device. The number of stored lists, h;, for a given
<attribute, value> pair <A;, v;>, may be more than 1, 1 < hy =< ny.

The number of stored lists still does not approach the inverted file case, except
where there is only a single record in every cell. However, there are more stored
lists than in the multilist case. The processing complexity lies between the inverted
and multilist cases. Such an organization is particularly useful if the cell size is
chosen so that the lists may be traversed in internal memory. In the case of paged
systems, this may equal the page size. In multiprocessor systems, different proces-
sors may traverse lists within different cells in parallel to improve response times.

Let us reconsider the index structure of Figure 3.19 to explain the three file
structures examined so far. In an inverted index the number .of groups chosen is equal
to the number of records, i.e., hy = n;. Each group is of length one and each pointer
points to a single record. In a multilist file, h; = 1 and only one list of length n;
exists for value v;; of attribute A;. With a cellular multilist, there are hy lists for value
v;j of attribute A;, each list being limited to a convenient size to maximize the re-
sponse time. The size of the list may be determined by the characteristics of the
physical storage device. In the case of a disk-type device, the list may be limited to
a single cylinder.

Ring Files

The last records of the lists in a multilist file poings to a null record. In ring files the
last record entry in each list points back to the index entry. Therefore, from any
point within the list a forward traversal of the links would bring us to the index
entry. The index entries contain the value for the attribute, making it unnecessary to
store the attribute-value in the physical records. This makes for a smaller record.
Figure 3.24 shows a number of rings for the car dealership data, shown in Figure C
of example 3.10.

In DBMSs using the network data model, a set is implemented as a ring by
linking the member record occurrences in a ring that starts at the owner record oc-

126 Chapter 3 File Organization

cannot, because they are the leaf nodes.) The pointers T, 1 =< j = n (note, not n
+ 1), in the leaf nodes point to storage areas containing either records having a key
value ky;, or pointers to records, each of which has a key value k;;. The number of
key values in each leaf node is at least [(m — 1)/2] and at most m — 1.

Note that unlike the index-sequential file, the B -tree need not be a clustering
index. That is, records may or may not be arranged in storage according to their key
values.

The pointer Ty(,+) is used to chain the leaf nodes in a sequential order. This
allows for sequential processing of the underlying file of records.

The following conditions are satisfied by the nodes of a B*-tree (ana also by
the nodes of the older B-tree scheme):

1. The height of the tree is = 1.
2. The root has at least two children.

3. All nodes other than the root node and the leaf nodes have at least [m/2]
children, where m is the order of the tree.

4. All leaf nodes are at the same level.

Vo

Example 3.14 Assume that we are given a file containing the following records:

Book# Subject Area
2 Files
3 Database
4 Artificial intelligence
5 Files
7 Discrete structures
8 Software engineering
9 Programming methodology

Operating systems

. 40
50 Graphics
51 Database
52 Data structures

A B™ -tree ot order 4 on Book# is shown in Figure E.

3.7 Indexing Using Tree Structures 127

3.7.3

Figure E A B*-tree (showing only some of the leat nodes). Each P,
is a pointer to the storage area containing records (or point-
ers) for the key Book# = i; L represents a null pointer.

(L= i 1)

TR CREED ()
VYo
iR TR T ~

L_____;

Operations

Searcn

The nonleaf nodes of the B*-tree act as a traversal map with the leat nodes contain-
ing the actual records or the key values with pointers to the storage lacation contain-
ing the records. Therefore, all operations require access to the leaf nodes.

‘The search algorithm for the B*-tree is given in below. The number of nodes ac-

cessed is equal to the height of the tree. Once the required leaf node is reached, we
can retrieve the pointer for the storage location containing the records; knowing the
storage location, we can retrieve the required record(s).

2

Insertion and Deletion

The insertion and deletion of records with a given key first requires a search of the
tree. Below, we discuss the insertion (or deletion) of record keys from the trees. We
assume that the records themselves would be inserted in (or deleted from) the perti-
nent storage locations. Insertion and deletion that violates the conditions on the num-
ber of keys in a node requires the redistribution of keys among a node, its sibling,
and their parent.

Chapter 3 File Organization

* Deletion :

The insertion causes a split of this node into the following two nodes with
the key value 5, along with a pointer passed to the parent of the node:

5T)

Let the address of the new node be Py. Then the pair <5, Py> is passed to
the parent node (in this case the root) for insertion. The relevant portion of
the resultant B -tree is shown in Figure F.

Figure F The B*-tree of Example 3.14 after insertion of the key for
Book# 1.

When a key is deleted, the leaf node may end up with less than [(m—1)/2] keys.
This situation may also be handled by moving a key to the node from one of its left
or right sibling nodes, and redistributing the keys in the parent node. However, if
the siblings have no keys that could be spared, such redistribution is not possible. In
this case, the node is merged with a sibling along with the deletion of a key from
the parent node: The loss of the key from the parent node may in tum cause further
redistribution or merging at this higher level of the tree.

The leaf node containing the key to be deleted is found and the key entry in the
node deleted. If the resultant node (let us refer to it as TD) is empty or has fewer
than [(m — 1)/2] keys, ‘

1. The data from the sibling node could be redistributed, i.e., the sibling has
more than the minimum number of keys and one of these keys is enough to
bring the number of keys in node TD to be equal to [(m—1)/2].

2. Or, the node TD is merged with the sibling to become a single node. This is
possible if the sibling has only the minimum number of keys. The merger of
the two nodes would still make the number of keys in the new node less than
the maximum.

3.7 Indexing Using Tree Structures 131

In the former case the key entry in the parent node will be changed to reflect the
redistribution, and in the latter case the associated entry in the parent node would
also be deleted.

Example 3.16

Let us delete the entry for Book# 5 from the tree shown in Example 3.14.
The resultant tree is shown in part i of Figure G. Note that the key value 5
is maintained in the internal node.

Figure G (i) The B*-tree that results after the deletion of key 5 from
the tree of Example 3.14. (ii) The B -tree after the deletion

GEIETD,
(o) (Ees) ((n D)

—————3 0 o o

Y Y
P9 9 Pu 14 —r— & & @ Psl 51 P“ 54 L
) A

> P-; 7 Pg 8 o o o—3f

P, 2 P33P 4

(p4y9o9 8 ;) C, TEIEED) (;1 2)

s gl Py 51 Py 34+

A

NNy & ool Pep 40 Py 50

(ii)

134 Chapter 3 File Organization

- Flgure 3.27 Derving address for clustered storage.

Pointer using Page# and
offset or displacement

l Page# I Offsetlin page]

A

Y

Page # to Y - -
secondary — Record pointed to
storage
block #
table

\

Physical block#

would necessitate changes to their values. Then should all pointers be implemented
as logical addresses (i.e., by some key of the record)? This requires that there exist
a mapping scheme from the key to the physical address. If this mapping is provided
by an index, it entails additional accesses for each logical pointer access. Similarly,
this applies for the hashing of the key values, except in unlikely hash functions that
produce no collisions.

It is possible to use addresses based on page or bucket numbers and displace-
ment within page where each page or bucket contains a set of blocks, i.e., a page
contains a large number of records. The physical location of each of these file pages
can be stored in a small table; this table can be brought into main memory when the
file is in use. The displacement is used as a modifier, and the logical to physical
address mapping can be done as shown in Figure 3.27 without additional secondary
storage accesses. When the file is moved around on the disks, the only requirement
is that the cluster of records in the page are meved together so that their displace-
ments are not altered.

3.9 Record Placement

We began this chapter by stating that the time neeaea to access data on secondary
storage could be optimized by minimizing the component of response time that we
called the access time. In the sections above, we considered how access is facilitated
by employing certain file organizations. The primary consideration in all organiza-
tions is access to the next or some particular logical record. Our main concern has
been with access methods. We stated that the response time could also be optimized
by suitable record placement.

A suitable placement strategy necessitates the knowledge or estimation of access
frequencies or probabilities. We want the records to be placed in such a manner that
the average head movement is minimal. It has been proven that the cost is minimal
when the most frequent (or likely) records are grouped together in blocks and the
blocks arranged such that the block access probabilities form an organ pipe arrange-
ment. This type of arrangement results when we sequence block placement in non-

310 Concluding Remarks

Organ pipe arrangement.

Pe Py P2 Py P3

P

s Py

increasing access probability order. We first place the block with the highest access
probability at some point and the other blocks in nonincreasing access probability
order, alternately to the left or to the right of the already-placed blocks. Let us
consider, for instance, n blocks and let the access probability of the ith block be p;,
where p; = p, = . . . = p,. The resultant optimal placement of blocks is “hown in
Figure 3.28. The optimal record placement strategy is applicable, even to the file
organizations considered earlier in this chapter.

Concluding Remarks

In this chapter we looked at some common file organizations. They occur quite often
in systems and applications work. As we have seen, no one organization can effi-
ciently support all applications and types of access. It may be necessary to design a
file that supports different organizations for different key fields, depending on the
application requirements. However, it is not wise to design elaborate organizations
for rare types of access. In file design, particular emphasis is placed on usage and
factors of growth. We should also be aware of the space/time tradeoff in file design.
Speeding up some accesses is always accompanied by increased storage demands.
The simplest serial file has minimal wastage of storage space or overheads. However,
as we have seen, access and updates are expensive. The other file organizations
improve performance of certain operations, but require additional storage space.

In the index-sequential file the records are ordered with respect to the primary
key. In this way it is possible to allow random and sequential access to any record.
An index-sequential scheme, however, becomes inefficient if there are a large num-
ber of insertions and consequent overflows, and it requires periodic maintenance. For
a file that is growing rapidly, index-sequential organization may be inappropriate.
B*-tree indexing, with its built-in maintenance, allows growth without the penalty
of performance degradation. Both types of indexing allow random search followed
by sequential search. However, the records in the case of the B*-tree file may not
be clustered and therefore it is possible that a disk access may be required to retrieve
each record. Range queries, wherein records have a range of key values, can be
handled by these file organizations.

With direct access supported by hashing, random access to any record is ob-
tained in a fixed time but if the records are not clustered on the key used for hashing,
sequential or range queries can only be handled as a series of independent requests.
The hashing function maps a key value into a bucket address. With a good hashing
function sequential keys need not be mapped to the same or consecutive buckets.
However, having obtained the first bucket address, we have no way of knowing
which bucket will contain the next key.

138 Chapter 3

File Organization

homogeneous records
primary block

overflow block

update operations
sequential file

serial file
index-sequential file
direct file

nonkeyed sequential file
transaction file

' "old master file

new master file
index file

data file
implicit index

Exercises

explicit index

limit indexing

block

bucket

sequential index key

index-sequential search

track index

skip-sequential processing

virtual storage access
method (VSAM)

control interval

control area

hashing

collision

dynamic hashiny

extendable hashing
inverted index file
inverted file
multilist file
cellular list

cell

ring file

leaf node

m-order tree
B*-tree

overflow
redistribution
B-tree

failure nodes
record placement

3.1 Access methods are measured by access and storage efficiencies. Define each term and its
major objectives. Which is the most important consideration in a batch environment? In an
online environment? Give reasons.

3.2 Discuss the differences between the following file organizations:

(a)
®)
©
()]

serial
index-sequential
hashed

inverted

Compare their storage and access efficiencies. To what type of application is each of the

organizations suited? -
3.3 We are given a file of 1 million records, each record being 200 bytes long, of which 10

bytes are for the key field. A physical block is 1000 bytes long and block addresses are 5

bytes long.

(a) Using a hashed file organization with 1000 buckets, calculate the bucket size in
blocks. Assume all blocks contain the average number of records. What is the average
number of accesses needed to search for a record that exists in the file?

(b) Using an index-sequential file with one level of indexing and assuming that all
file blocks are as full as possible (with no overflow), how many blocks are needed for
the index? If we employ a binary search on the index, how many accesses are required
on average to find a record?
(c) If we use a B*-tree and assume that all blocks are as fuli as possible, how many
index blocks are needed? What is the height of the tree?

(d) Repeat part (c) if all blocks are half full.

3.4 We are given a file of 10 million records, each record being 100 bytes long, of which 5
bytes are for the key field. A physical block is 10000 bytes long and block addresses are 5

bytes long.

(a) Using a hashed file organization with 10,000 buckets, calculate the bucket size in
blocks; assume all buckets are half full. What is the average number of ‘accesses

needed to search for a record that exists in the file?

3.11 Summary 139

3.5

3.7

3.10

3.11

(b) Using an index-sequential file with two levels of indexing and assuming that all
data blocks are half full, how many blocks are needed for the index? If we employ a
binary search on the index, how many accesses are required on average to find a
record?

(c) ifweusea B*-tree of order 500, how many index blocks are needed? What is
the height of the tree? How many disk accesses are required to find a record?

A file of 1,000,000 fixed-length records, each 200 bytes long, is stored on a magnetic tape.
The tape handler characteristics are a 100KB/sec transfer rate and a start/stop time of 25
msec. Compare the time required to read all the records if the block size is chosen as (a)
5000 bytes, (b) 50,000 bytes and the tape has to be stopped after reading a block. Ignore the
time used for processing after a block is read.

Records of 250 bytes are stored in blocks with a blocking tactor of 20. A drive using
3600-foot tape having a recording density of 6400 bpi (bytes per inch), an interblock ap:'
size of 0.5 inch, a read/write speed of 200 kilobytes per second, and a start-stop ti bT'
0.010 seconds is being used. How many records can the tape hold? What percentage /
tape is wasted? How long will it take to read the file from the tape without stopping?
much time is spent in reading the file if only one block is read at a time?

Given a record length of 32 bytes, a recording density of 1600 bpi, and an interblock gap
size of 0.6 inch, calculate the blocking factor to have 80% of a 1600-foot tape holding data.

A file of 100,000 fixed-length records, each 100 bytes long, is stored on a magnetc tape.
The tape handler characteristics are a 40KB/sec transfer rate and a start/stop time of 20 msec.
The file is recorded at 1600 bpi and the interblock gap is 1/2 inch. Find the length of the
tape required and compare the times required to read all the records if the block size is
chosen as (a) 100 bytes, and (b) 10,000 bytes.

Consider a hash function h(k) = k mod 17 for a direct access file using extendable hashing.
Assume that the bucket capacity is four records. Show the structure of the file including the
bucket address table after the insertion of the following records: 87,13, 53, 82, 48, 921, 872,
284, 36, 128, 172.

In a multilist organization, give efficient algorithms to process the following queries:

(a) get all records with Key, = x and Key, =y

(b) get all records with Key, = x or Key; = y
If a ring organization is used instead, what complicatiéns are introduced into the processing
of the above queries?
The following file contains student records. The Rec# is the address used to retrieve the
record using a direct access function on the ptimary key (Id). .

(a) Generate 2 directory for a multilist that has indexes for Dept, Advisor, and
Status. Fill in the appropriate record number values in the Ptr field provided
within the file.

(b) Using this multilist directory and the data file, indicate how you will answer the
query to retrieve all records for students who are in the COMP department, or
who have SMITH F. as an advisor, or whose status is F2, without accessing

redundant records.
(c) Using the above data and assuming that there are three records per cell, generate
a directory for a cellular multilist file with entries for Dept, Advisor, and Status.

140

Chapter 3 File Organization

3.12
3.13

Rec# Name Id Dept Ptr Advisor Ptr Status Pir
1 MICROSLAW Kalik 3634592 COMP SMITH F. F2
2 PASSASLO Joseph 3894336 PHYS JONES A. F3
3 PRONOVOST Pierre 6888954 ELEC WAGNER B. I
4 LOANNIDES Lambi 3518445 CHEM ACIAN R. F3
5 MACIOCIA Charles 7564019 ENGL BROST A. P2
6 CHO BYUNG Chu 2566984 CHEM JONES A. F2
7 CANNON Joe 7868286 PHYS JONES A. F3
8 BERGERON Daniel 2736849 COMP JONES A. 12
9 ABOND Daniel 7382943 ELEC WEGNER B. 13
10 HAMMERBELL Abraham 6792839 COMP SMITH F. P2
11 LANGEVIN Joseph 2768736 ENGL NEWELL J. P3
12 PELLERIN George 6689184 COMP WEGNER B. F2
13 ROBERT Louis 3707939 COMP MARTIN R. P1
14 SHARPE George 9877546 CHEM SMITH F. 12
15 PETIT Guy 2742619 ELEC SMITH F. I3

What are the advantages and disadvantages of the index-sequential file?

Consider a cylinder of an index-sequential file as shown below. Only the key values are
shown. The following changes are made to this cylinder:

add ID, add FW, add KP, delete FV, add FU, delete IQ, add JK, add IS, add IT, add JR

Here add indicates that a record is to be inserted into the file-and delete indicates that the
record is to be deleted from the file. Only the key values are given. The changes occur in the
order specified. L indicates null pointers. ’

HA Blockl Block2 Block3 Block4 BlockS Blocké

— 2900 Tr.Index FP FR . FT FV FZ

P 2901 GB GE GH GK GM GR
r 2902 GV GY HB HC HF HI
i A 2903 HL HO HQ HT HX 1A
mr 2904 IC IG U M 1Q IY
c e 2905 1z JB JF n IN JQ
a 2906 KA KD KG KL KO KS
L2907 KT KV KY KZ LB LF
Overflow 2908 1 1 1 1 1 1
Area 2909 1 1 1 4 1 1

Show the initial and final values of the track index. Also show the contents of the cylinder
after all of the above changes have been made.

